Combining deep speaker specific representations with GMM-SVM for speaker verification

نویسندگان

  • Ryan Price
  • Sangeeta Biswas
  • Koichi Shinoda
چکیده

This study combines a Gaussian mixture model support vector machine (GMM-SVM) system with a nonlinear feature transformation, discriminatively trained to extract speaker specific features from MFCCs. Separation of the speaker information component and non-speaker related information in the speech signal is accomplished using a regularized siamese deep network (RSDN). RSDN learns a hidden representation that well characterizes speaker information by training a subset of the hidden units using pairs of speech segments. MFCC features are input to a trained RSDN and a subset of hidden layer outputs are used as new input features in a GMM-SVM system. We demonstrate the potential of this approach for text-independent speaker verification by applying it to a subset of the NIST SRE 2006 1conv4w-1conv4w task. The hybrid RSDN GMM-SVM system achieves about 5% relative improvement over the baseline GMM-SVM system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Utterance partitioning with acoustic vector resampling for GMM-SVM speaker verification

Recent research has demonstrated the merit of combining Gaussian mixture models and support-vector-machine (SVM) for text-independent speaker verification. However, one unaddressed issue in this GMM–SVM approach is the imbalance between the numbers of speaker-class utterances and impostor-class utterances available for training a speaker-dependent SVM. This paper proposes a resampling technique...

متن کامل

The Robustness of GMM-SVM in Real World Applied to Speaker Verification

Gaussian mixture models (GMMs) have proven extremely successful for textindependent speaker verification. The standard training method for GMM models is to use MAP adaptation of the means of the mixture components based on speech from a target speaker. In this work we look into the various models (GMM-UBM and GMM-SVM) and their application to speaker verification. In this paper, features vector...

متن کامل

GMM kernel by Taylor series for speaker verification

Currently, approach of Gaussian Mixture Model combined with Support Vector Machine to text-independent speaker verification task has produced the stat-of-the-art performance. Many kernels have been reported for combining GMM and SVM. In this paper, we propose a novel kernel to represent the GMM distribution by Taylor expansion theorem and it’s regarded as the input of SVM. The utterance-specifi...

متن کامل

Text-independent speaker verification using support vector machines

In this article we address the issue of using the Support Vector Learning technique in combination with the currently well performing Gaussian Mixture Models (GMM) for speaker verification experiments. Support Vector Machines (SVM) is a new and very promising technique in statistical learning theory. Recently this technique produced very interesting results in image processing [1] [2] [3], and ...

متن کامل

MiniVectors: an Improved GMM-SVM Approach for Speaker Verification

The accuracy levels achieved by state-of-the-art Speaker Verification systems are high enough for the technology to be used in real-life applications. Unfortunately, the transfer from the lab to the field is not as straight-forward as could be: the best performing systems can be computationally expensive to run and need large speaker model footprints. In this paper, we compare two speaker verif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013